Low space complexity CRT-based bit-parallel GF(2n) polynomial basis multipliers for irreducible trinomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low space complexity CRT-based bit-parallel GF(2n) polynomial basis multipliers for irreducible trinomials

By selecting the largest possible value of k ∈ (n/2, 2n/3], we further reduce the AND and XOR gate complexities of the CRT-based hybrid parallel GF (2) polynomial basis multipliers for the irreducible trinomial f = u + u + 1 over GF (2): they are always less than those of the current fastest parallel multipliers – quadratic multipliers, i.e., n AND gates and n− 1 XOR gates. Our experimental res...

متن کامل

Polynomial Basis Multipliers for Irreducible Trinomials

We show that the step “modulo the degree-n field generating irreducible polynomial” in the classical definition of the GF (2) multiplication operation can be avoided. This leads to an alternative representation of the finite field multiplication operation. Combining this representation and the Chinese Remainder Theorem, we design bit-parallel GF (2) multipliers for irreducible trinomials u + u ...

متن کامل

On Low Complexity Bit Parallel Polynomial Basis Multipliers

Representing finite field elements with respect to the polynomial (or standard) basis, we consider a bit parallel multiplier architecture for the finite field GF (2). Time and space complexities of such a multiplier heavily depend on the field defining irreducible polynomials. Based on a number of important classes of irreducible polynomials, we give exact complexity analyses of the multiplier ...

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Low Complexity Bit-Parallel Finite Field Arithmetic Using Polynomial Basis

Bit-parallel finite field multiplication in F2m using polynomial basis can be realized in two steps: polynomial multiplication and reduction modulo the irreducible polynomial. In this article, we prove that the modular polynomial reduction can be done with (r − 1)(m − 1) bit additions, where r is the Hamming weight of the irreducible polynomial. We also show that a bit-parallel squaring operati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integration

سال: 2017

ISSN: 0167-9260

DOI: 10.1016/j.vlsi.2017.02.008